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Long-range spin systems with random interactions are considered. A simple 
argument is presented showing that the thermodynamic limit of the free energy 
exists and depends neither on the specific random configuration nor on the 
sample shape, provided there is no external field. The argument is valid for both 
classical and quantum spin systems, and can be applied to (a) spins randomly 
distributed on a lattice and interacting via dipolar interactions; and (b) spin 
systems with potentials of the form J (X l ,  x 2 ) / l x  1 - x2t ad, where the J ( x  I , X2) are 
independent random variables with mean zero, d is the dimension, and a > 1/2. 
The key to the proof is a (multidimensional) subadditive ergodic theorem. As a 
corollary we show that, for random ferromagnets, the correlation length is a 
nonrandom quantity. 

KEY WORDS: Subadditive ergodic theorem; random interactions; long- 
range interactions; dipolar coupling; free energy; correlation length. 

1. INTRODUCTION 

Notwithstanding the randomness, the outcomes of most experiments done 
on random systems, including spin glasses, do not depend on the specific 
sample and are reproducible. In a typical experiment one is concerned with 
systems in (or near to) equilibrium and measures a thermodynamic observ- 
able such as the freezing temperature of a spin glass, the magnetization, 
susceptibility, or specific heat. It then turns out that all samples whose 
preparation and external parameters (magnetic field, temperature, etc.) are 
identical give the same experimental outcomes. That is, one can simply take 
a specific sample and need not average over an ensemble of them. 

1 Universit/~t Heidelberg, Sonderforschungsbereich 123, 6900 Heidelberg 1, Federal Republic 
of Germany. 
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Consequently, a theoretical model not only has to give sensible an- 
swers for the averages, but it also has to be such that the thermodynamic 
observables are "self-averaging," i.e., that they converge with probability one 
to a nonrandom answer as the system becomes macroscopic. We note, 
however, that local quantities such as correlation functions may show a 
considerable dispersion (scatter) and that probability-one behavior is to be 
expected for global quantities only. In this paper we consider long-range 
lattice models, with particular emphasis on their free energy, and take the 
coupling constants as quenched independent random variables. 

Let us denote a finite domain in 2[ a by A, the number of sites in A by 
IAI, and the free energy of A by F(A). For short-range random systems it 
has been shown (l~ that IAI-1F(A) converges with probability one to a 
nonrandom limit as A ~ oc (in the sense of van Hove). The main ingredient 
of the proof is the observation that the free energy F(A) of a large system A 
composed of smaller subsystems A i equals the sum of the free energies 
F(Ai) of the components, plus a term due to the interactions between 
different components, 

F Ai = 2 F ( A i ) + B  A, A s A A j = t 3  if i ~ j  (1.1) 
i = 1  

If the interactions are short-range, B A represents a small fraction of the 
bulk free energy F(A), roughly proportional to the ratio of surface to 
volume for the components. Thus the free energy of short-range random 
systems is additive as the size of the system increases to infinity and, hence, 
allows for application of the well-known additive ergodic theorem, (2) which 
is a mainstay for the study of disordered materials. 

The above argument plainly does not work when the interactions have 
too tong a range (are not summable). If, however, the Hamiltonian is 
quadratic in the spin operators, the free energy F(A) is subadditive in A, 
i.e., 

(0,) F A i < • F ( A i )  , A i f l A j = O  if i=/:j  (1.2) 
i i = 1  

This allows us to use the subadditive ergodic theorem of Akcoglu and 
Krengel. (3) The theorem implies that if (a) F(A) is subadditive in A and (b) 
the average free energy exists as A ~ oc (in the sense of Fisher), then the 
thermodynamic limit of IAI-1F(A) exists with probability one and is 
nonrandom. We give sufficient conditions on the coupling constants so as 
to ensure requirement (b). 

For long-range Ising systems the existence of the free energy with 
probability one has previously been proved by Khanin and Sinai, (4) who 
also announced the same result for a wider class of classical lattice systems. 
The present approach is much simpler, and applies to both classical and 
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quantum models, whether Ising, Heisenberg, or n-component. It also shows 
the power of the subadditive ergodic theorem in this type of problem. 

In Section 2 we treat the Ising case. We turn to more general classical 
and quantum models in Section 3, where one can also find a proof of the 
fact that in random ferromagnets the correlation length is a nonrandom 
quantity. We summarize our results in Section 4. 

2. ISING SYSTEMS 

We consider a random Ising pair interaction with Hamiltonian 

1 ~ J(i,j)q~(i-j)S(i)S(j) (2.1) HA({J }) = 2 
i, j E A  

Here the q~(i - j )  determine the range of the interaction and the J(i, j) are 
independent random variables whose distribution only depends on ( i - j )  
and satisfies a uniformity condition; cf. Eq. (2.6b). We always use ~ �9 �9 �9 ) 
to denote averaging with respect to the random configuration {J}. 

For a particular configuration {J} of the random variables the corre- 
sponding free energy per site in the thermodynamic limit is given by 

f ( { J } ) =  lim 1 F ( A ; ( J } ) = - k T l i m  1 inZA({j}  ) (2.2) 
TXT 

where 

ZA((J  }) = Trexp - flHA((J )) (2.3) 

is the partition function for the Hamiltonian HA((J }) and fl = 1/kT is the 
inverse temperature, which we put equal to one throughout what follows. 
For Ising spins [S( i )=  +1] the trace means a sum over all 2 Ial spin 
configurations. 

As to the existence of the limit in (2.2) we discern two cases. 
Case I (Short-range interactions (1)): If 

2 I~(J)l < ~ (2.4) 
j E Z  d 

i.e., �9 in /l(~d), then the limit (2.2) exists in the sense of van Hove (5) with 
probability one and is independent of the boundary conditions. Moreover, 
the stronger notion of thermodynamic convergence holds, (Ic) which partly 
justifies the use of the replica method. The 3(i, j) are only required to have 
a uniformly bounded finite first moment. The proof of (2.2) exploits 
relation (1.1) and the additive ergodic theorem (or the strong law of large 
numbers) combined with standard arguments for the deterministic, transla- 
tion invariant case. (5) For nonrandom, translation invariant spin systems 
the ll-condition (2.4) appears necessary. In three dimensions the dipole- 
dipole interactions are at the borderline: they are not l l, and the free 
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energy exists only in the Fisher, not  in the van Hove,  sense. (6) 
Case H (Long-range interactions(a)): If  

I~(j)12 < oo (2.5) 
j ~ 7 7  a 

i.e., �9 in 12(77 d) D_ ll(~_a), then the limit (2.2) exists in the sense of Fisher (s) 
with probabil i ty one and is independent  of the boundary  conditions. The 
J(i, j) are required to satisfy a momen t  condition, (4) 

(J(i, j ) )  = 0 (2.6a) 

I(J'( i , j)) l  < n]cn-2(j2(i, j))  (2.6b) 

where the second moments  (J2(i, j)> are uniformly bounded.  Note  that all 
moments  must  exist. To simplify the notat ion we choose c in such a way 
that 

](J"(i,j))] < n!c" (2.6c) 

The proof  in Ref. 4 requires the theory of large deviations, is quite 
complicated,  and only works for discrete (Ising) spins. A much weaker 
result for a restricted class of probabil i ty distributions has been obtained by 
Goular t  Rosa, (7) who proves the existence of the average free energy, 
l imA_,~IAI - I (F (A;  (J))>, with free boundary  conditions. The limit holds 
again in the Fisher sense. 2 

In  this paper  we treat Case II. Except  for the fact that  we have to 
restrict ourselves to free bounda ry  conditions, we recover all the results of 
Ref. 4, but  in a much  simpler way that also reveals the physics behind the 
12-condition (2.5). Our  main  tool is a subadditive ergodic theorem of 
Akcoglu  and Krengel  (Ref. 3, Theorem 2.7): 

T h e o r e m .  Let F be a stochastic process on Z d such that 

(a) F A i ; { J }  ~ < ~ - ~ F ( A ~ ; ( J } ) ,  A i A A j = O  if i=/=j 
i = 1  

(subadditivity); 

(b) ]AI -~ (F (A;  { J } ) )  > C, 

2 The claim of van Hove convergence seems to be incorrect. The fact that subadditivity of a 
function does not suffice for van Hove convergence has been known for quite a long 
time. (8'9'18) The difference between van Hove and Fisher convergence is, roughly, that for 
van Hove convergence the surface to volume ratio has to approach zero whereas for Fisher 
convergence the A's have to increase at about the same rate in all directions. 
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for some constant C independent of A. Then limA+oo]A [- IF(A; {J }) exists 
in the sense of Fisher with probability one (for almost every {J }). 

We apply this theorem to the Hamiltonian (2.1) and prove the sub- 
additivity of the corresponding free energy. This was first done by Grif- 
fiths, (6) but to make the paper reasonably self-contained we will sketch a 
slightly different argument leading to (1.2). The Hamiltonian (2.1) is 
quadratic in the spin operators of A and, thus, spin-flip invariant. Let 
Pa+ = CStexp[ - fiH(Ai; (J))]  be the Gibbs state for A i with free boundary 
conditions and suppose A is the disjoint union of a (finite) number of Ai's. 
By the variational principle [Ref. 5b, pp. 46-47] 

f(iU=lAi)=1~n(-S(iU=lAi;p).-{-p(H(iU_lAi))) ( 2 . 7 )  

Only the dependence upon A has been made explicit. The last term is the 
expectation with respect to p of the energy, and the entropy functional is 
given by S(A; p )=  - T r o l n  p, where the trace is restricted to A. The left 
sicle of (2.7) is certainly less than the right side if we stick to p = @/k= IPA," 
Then [ln(xy) = in x + In y] 

s U A, ; | 0A, = 2 s(a ,  (2.8) 
i=1  i = l  i=1  

and 

((=o)) 0 H Ai = 2 OA~(H(Ai)) + mixed terms (2.9) 
i i=1  

We now come to the heart of the argument. Consider a typical "mixed 
term": OA, | OA,(S(k))PA+(S(I)) for k in A i and l in Aj 
with A+ A Aj -- 121. Since finite-volume Gibbs states still have all the symme- 
tries of the Hamiltonian, 

OA,( S(k)) = OA+( S( I)) = 0 (2.10) 

and we are left with the homogeneous terms only. Thus 

F 1+ <~-]F(Ai) ,  A i O A j = 0  if i=/=j (2.11) 
i=1  i = 1  

which is condition (a) of the subadditive ergodic theorem. 
Before proceeding we note that this argument may be readily general- 

ized to classical and quantum Heisenberg and more general, n-component 
models. In the classical case one performs the canonical transformation 
S(i)--> -S ( i )  for all i, and in the quantum case one may use time-reversal; 
cf. Ref. 6, p. 658. [The time-reversal operator ~ is an antiunitary operator 
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with the property OSO - l =  - S ;  moreover, it leaves the trace invariant 
and commutes with the Hamiltonian (2.1) since H(A; {J}) contains only 
terms quadratic in the spin operators of A.] 

We now have to exhibit a uniform lower bound for the average free 
energy so as to fulfill condition (b) of the subadditive ergodic theorem. For 
simplicity of notation we take all the J(i, j) as identically distributed. In 
view of condition (2.6) this is not a serious restriction. We split up the 
Hamiltonian (2.1) into a finite.range part HF(A; {J}) containing all terms 
with li - J l  << R and a long-range part HL(A; {J}) containing the remain- 
ing terms. R is chosen in such a way that ~IJI>R[~(j)] 2 is small enough; this 
will be specified later. We then get, using a self-evident notation and taking 
advantage of the concavity of the free energy [cf. Eq. (2.2) and Refs. 5a 
w 5b Lemma 1.3.3 or, in the classical case, Cauchy-Schwarz], 

F ( A ; H ( A ; { J ) ) ) > � 8 9 1 8 9  (2.12) 

Because R has been chosen independently of A, the (uniform) lower bound 
for the Hg-part can be derived by standard methods (I) A la case I, and we 
are left with H L. 

The moment condition (2.6c) implies that for t sufficiently small the 
characteristic function (exp[tJ(i,j)]) is analytic in t and, hence, has an 
absolutely convergent cumulant expansion, (~~ which by (2.6a) starts with 
the second cumulant, 

<exp[tJ(i,j)])=exp[ n=2 ~ <J"(i'j))ct"/n'] (2.13) 
In the estimate below this observation is basic. Now, by Jensen's inequality, 

IAI-'<lnZA(2H L {J )))  < IAI - lln<ZA(2HL {J ))> (2.14) 

and the right-hand side may be rewritten 

IA[-qn<ZA(2H L {J )))  

=,A, 'In(Tr iyI1ea exp[J(i,j)d~(i-j)S(i)S(j)]> 
I i - j ]  > R 

= ] a l - ' l n ( T r  i,y~AH (exp[J(i,j)aP(i-j)S(i)S(j)])) 
li --jl > R 

=[Al -qn  r H exp 2 - ~ . ( J ~ ( i , j ) ) c ( ~  
i, j E A  I n = 2  

l i - j l >  R 

(2.15) 
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The first equality in (2.15) is nothing but the defintion of Z A with the 
restriction ]i - j l  > R, for the second equality we used the independence of 
the J(i,j),  and for the last we took advantage of (2.13). Since ]S(i)I = 1, 
expression (2.15) is majorized by 

oo 
In2 + [A] - l  ~ 1 ](jn(i,j))c[ ~ [d~(i-j)l" 

n=l  ~ "  i, j E A  
l i - j l >  R 

~ i " dp " ~ 1 I(J  ( , J ) ) c l [  ~ I (J)l I (2.16) < l n 2 +  k 
n = l n 2  L ] j I > R  J 

We finish the argument by noting that (2.5) holds and for n/> 2 
\ n / 2  

2 I@(j)l"< 2 I'I'(j)l 2) (2.17) 
Ijl > R l J[ > R 

so that, if in (2.13) 

t 2 := ~ I~(j)l 2 (2.18) 
Ijl > R 

is small enough, i.e., R is large enough, the series in the right-hand side of 
(2.16) converges. An upper bound for the partition function gives a lower 
bound for the free energy and, thus, we are done. In the appendix we show 
that the thermodynamic limit of the free energy does not depend on the 
specific random configuration. The shape-independence follows from a 
slight modification of a standard argument in Ref. 6, Section III.C. 

3. EXTENSIONS 

The restriction to Ising spins is not essential. The extension of the 
previous arguments to classical n-component models is immediate: just 
replace S(i)S(j) in (2.1) by ~]=lS~(i)S~(j) and notice that all the esti- 
mates are still valid, up to a minor modification of (2.16) taking into 
account the length of the spin. 

The result for quantum spins follows from two observations: (a) the 
subadditivity of the free energy still holds; (b) a classical upper bound for 
the quantum partition function z Q ( s )  for spin S is obtained (Jl) by 
replacing the quantum spin by (S + 1) times the classical unit vector, 

z Q ( s )  <, Z c ( S  + 1) (3.1) 

The classical partition function z C ( s  + I), where the spins are vectors on a 
three-dimensional sphere with radius (S + l) and the usual measure, is easy 
to handle. Since an upper bound for the partition function gives a lower 
bound for the free energy, the result is established. 
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A second application of these arguments is provided by dipoles with 
random positions on a lattice, whose Hamiltonian is given by 

1 H(A; {~}) = ~ ~ ~i~j ~ A~j~S~(i)Sp(j) (3.2) 
i ~ j  a, 

where the ~i are either zero or one with probabilityp or (1 - /7)  and the A/~ a 
denote the well-known dipole-dipole coupling constants. The ~s are inde- 
pendent, identically distributed random variables which indicate whether a 
lattice site is occupied or not. We assume there is no external field. In this 
case also the subadditivity is readily established, and a lower bound for the 
free energy follows from the inequality (6'12) 

H(A; (~)) > - C l a  I (3.3) 

for some constant C independent of A and ((}. 
Yet another application of the subadditive ergodic theorem (in this 

case the original one of Kingman (13) suffices) provides us with the existence 
of the nonrandom correlation length for a class of random Ising ferromag- 
nets such as those studied by Fisch. (14) The Hamiltonian reads 

H ( A ; ( J } ) = -  ~ J( i , j )S ( i )S ( j )  (3.4) 
i , j ~ A  

The J(i, j), which assume positive values, are independent random vari- 
ables whose distribution only depends on (i - j ) .  

Pick a random configuration {J}. Since the interaction is ferromag- 
netic, a Gibbs state/~r on 77 a may be obtained as the infinite volume limit 
of #r with ferromagnetic boundary conditions. Let 

l*~(S(i)S(j)) = I*~(S(i)S(j)) - Iz~(S(i))I*~(S(j)) > 0 (3.5) 

be the truncated pair correlation function, which also depends on {J}. 
Inequalities of Griffiths and Graham (15) imply 

#~(S( j )S( I ) )  > Iz~(S( j )S(k))Iz~(S(k)S( l ) )  (3.6) 

Moreover, - I n  I~(S(i)S(j))  > 0, whatever j .  Suppose i, j ,  and k in (3.6) 
are on a straight line in a fixed direction h. Then - l n  iz~(S(i)S(j)) 
determines a subadditive stochastic process on the line and, by the sub- 
additive ergodic theorem, the limit 

l i m -  1 1 (3 .7)  j~oo -~ ln l~  ( S(O)S(j)) - ~(fi) 

exists with probability one and does not depend on {J ); cf. the Appendix. 
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Because the symmetry of the lattice is only discrete, a directional depen- 
dence of ~(fi) upon fi cannot be excluded, as is exemplified by the transla- 
tion invariant nearest-neighbor Ising ferromagnet. (~6) We expect a finite 
correlation length ~(fi), if the interactions are finite-range or exponentially 
decaying and the temperature is either high or low, or with an external 
magnetic field [in that case (3.6) also holds]. See for example Ref. 17. 
Summarizing: Though the correlation functions of a random ferromagnet 
may show a considerable dispersion, their asymptotic behavior is ahnost 
surely nonrandom. 

4. CONCLUSION 

We have shown that subadditive ergodic theorems are quite helpful in 
analyzing the behavior of random systems. In particular, for long-range 
random spin systems optimal conditions on the range of the interaction and 
the distribution of the coupling constants show up naturally, and proofs 
run in a rather direct and simple way. Moreover, we are able to elucidate 
the physical reason behind the fact that potentials of the form J(x 1,x2) / 
] x ~ -  x2[ ~d, where the J(xl,x2) are independent random variables with 
mean zero, give rise to a well-defined free energy only if a > 1/2. Physically 
it is plausible that a random variable with mean zero effectively decreases 
the range of a potential which behaves at infinity like Ix I - Xz]-~d. But why 
should a exceed precisely 1/2? This becomes clear if we look at our lower 
bound for the free energy as it evolves from condition (b) of the subaddi- 
tive ergodic theorem (Section 2). The lower bound is obtained via the 
cumulant expansion (2.13) of the characteristic function (exp[tJ(i,j)]). If 
(J( i , j ) )  = 0, the first cumulant vanishes and the series starts with the 
second cumulant, which is the variance of J(i, j) and nonzero whenever the 
probability distribution of J(i , j)  is nontrivial. Studying the transition 
(2.14)-(2.16) we see that we get a series with lowest-order term 

I j[ -2~a (4.1) 
jET1 d 

IJI>R 

which is finite only if 2ad > d, i.e., a > 1//2. If (J(i,j))r we have to 
resort to the l t-condition (2.4), which implies c~ > 1. We note, however, that 
in both cases thermodynamic observables give rise to nonrandom and, thus, 
reproducible answers as the size of the system becomes macroscopic. 

Surprisingly, the dipolar interaction is much easier to deal with. 
Apparently a physically sensible potential gives rise to a straightforward 
mathematical treatment once one uses the appropriate formalism--here the 
subadditive ergodic theorem. 
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A P P E N D I X  

Throughout what follows we fix a sequence of A's which tend to 
?Td(A~ oo) in the sense of Fisher. By the subadditive ergodic theorem 
(Sections 2 and 3) the limit 

f ( { J } ) =  lim 7~-rlIF(A;{J}) (A.1) 
A--~m 

exists with probability one, but f may still depend on the specific random 
configuration {J }. We now show that this is not the case. 

The random variables J(i, j) are to be associated with a measure space 
(fa, J - , / , )  where the J(i, j) are integrable with respect to/~. The free energy 
F(A; {J}) is a set function on 2U which maps each finite domain A onto 
the stochastic variable F(A; (J});  cf. Eqs. (2.1)-(2.3). Let a be a vector in 
7/d and define % to be the shift in ~2 which shifts each configuration ( J  } by 
- a ,  i . e . ,  

(%J)(i, j) = J ( i -  a, j - a) (1.2) 

Since % is one-to-one and measure preserving, it induces an isometry U~ in 
L~ (~2) by 

L~(a) ~ f ~  (U~f)({J  }) = f ( % { J  }) (1.3) 

By (2.1)-(2.3) 

[ UaF(A; . ) ] ( { J  }) = F(A + a; {J }) (A.4) 

Since the J(i, j) are independent random variables whose distribution only 
depends on ( i - j ) ,  the transformation % is ergodic and, hence (Walters (2) 
p. 23), 

Vaf = f ~ f = C{ (a.e. [/*3) (A.5) 

We show that f in (A.1) is translation invariant. In doing so we take 
advantage of (A.4). 

Label the A's in such a way that A 0 C A 1 c A 2 c �9 �9 �9 . Since A n ~  oo 
in the sense of Fisher, so do {A n + a} and the "intertwining" sequence 
(A',) defined by A~n = A n, A~n+l = A n + a. Hence [A'n]-iF(A'n ; ( J ) )  con- 
verges with probability one to a finite limit as n--> oo and so do the 
subsequences with n even and odd, so that by (A.4), for [tq-almost every 
(J},  f ( ( J } )  = (Uaf)({J)), and the proof is complete. 
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N o w  consider the average ] A ] - l ( F ( A ;  ( J ) ) ) .  By the subaddit ivi ty this 
funct ion is decreasing in A and  by  condit ion (b) of the subaddit ive ergodic 
theorem (Section 2) it has a f in i te  limit as A ~ oe. Moreover ,  we have for 
a lmost  every {J},  

f ( { J  }) = A+001im [ A l - l ( F ( N ,  { J  } ) ) =  i ~ f l A l - ' ( F ( A ;  ( J ) ) )  (1 .6)  

This justifies the cus tomary  procedure  of calculating the free energy per site 
for a specific sample.  

We finish this appendix  by  indicating another  proof  of the transla- 
t ional  invar iance  of f.  T o  simplify the a rgumen t  we take the one-  
d i m e n s i o n a l  s u b a d d i t i v e  p rocess  (3.7) of Sec t ion  3, pu t  f ( { J } ) =  
limn_~00n- IF([0, n]; {J  )), suppress the dependence  upon  {J  } in F, and  note 

F ( [ 0 , n  + 1]) ~< F ({0} )  + F ( [ 1 , n  + 1]) (1 .7)  

so that  

f ( { J  } ) =  lim n - ' F ( [ O , n  + 11) < lim n - l F ( [ 1 , n  + 1 1 ) =  ( f o  r l ) ( { J  }) 
/ ' / - - ) 0 0  H ----~ O~ 

(A.8) 

On the other hand,  because  r t is measure  preserving, 

f a { f o  rt - f }  d/z= 0 (1 .9)  

Thus  the integrand, which is nonnegat ive  by  (A.8), vanishes [ / , ] -almost  
everywhere,  and  the t ranslat ional  invar iance of f is established. 
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